If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (6t2 + 2t + 1) * 3t = 0 Reorder the terms: (1 + 2t + 6t2) * 3t = 0 Reorder the terms for easier multiplication: 3t(1 + 2t + 6t2) = 0 (1 * 3t + 2t * 3t + 6t2 * 3t) = 0 (3t + 6t2 + 18t3) = 0 Solving 3t + 6t2 + 18t3 = 0 Solving for variable 't'. Factor out the Greatest Common Factor (GCF), '3t'. 3t(1 + 2t + 6t2) = 0 Ignore the factor 3.Subproblem 1
Set the factor 't' equal to zero and attempt to solve: Simplifying t = 0 Solving t = 0 Move all terms containing t to the left, all other terms to the right. Simplifying t = 0Subproblem 2
Set the factor '(1 + 2t + 6t2)' equal to zero and attempt to solve: Simplifying 1 + 2t + 6t2 = 0 Solving 1 + 2t + 6t2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 0.3333333333t + t2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 0.3333333333t + -0.1666666667 + t2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 0.3333333333t + t2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 0.3333333333t + t2 = 0 + -0.1666666667 0.3333333333t + t2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 0.3333333333t + t2 = -0.1666666667 The t term is 0.3333333333t. Take half its coefficient (0.1666666667). Square it (0.02777777779) and add it to both sides. Add '0.02777777779' to each side of the equation. 0.3333333333t + 0.02777777779 + t2 = -0.1666666667 + 0.02777777779 Reorder the terms: 0.02777777779 + 0.3333333333t + t2 = -0.1666666667 + 0.02777777779 Combine like terms: -0.1666666667 + 0.02777777779 = -0.13888888891 0.02777777779 + 0.3333333333t + t2 = -0.13888888891 Factor a perfect square on the left side: (t + 0.1666666667)(t + 0.1666666667) = -0.13888888891 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
t = {0}
| t(r+4)=28 | | 6p+3q-2p+8+2q-14= | | 7y+9=7y-3 | | -2+2z=2z-2 | | 4(3x+2)+5(2x-3)=8(2x+13) | | 1=4x-15 | | 6(x-9)+4=7(x+2)-26 | | 6d+2.50d=90+1d | | 7(3x+4)-5(2x+3)=4(2x+9) | | 5-2(x-9)=8-(x-12) | | -x-38=9x+22 | | 142=y | | -x+29=3x+5 | | 142=x | | x+2x+7=180 | | 4(5x+2)=3(4x+17) | | -28-7x=-3x | | x+2x+7+90=180 | | 7(3x+7)=4(2x-3) | | 7x-27=3x+5 | | 2m^3-3m^2-8m+12=0 | | f(n)=6-2n | | 8x-4+12-4x=-40 | | 8-6x=1-5x | | 23x+94=34x+42 | | 7p-13-6p=9 | | 17x+9=13x+29 | | 2x^2+kx+7=0 | | 3x-2x-7=(-1)+6 | | 3(7X-4)=6X+2(4X-6) | | 7(4x+5)-3(6x-4)=314 | | 2x-(21+x)=31 |